Hand-In Assignment 6

1. Let $\{x_n\}$ be a sequence of real numbers defined by

$$x_{n} = \begin{cases} \frac{1}{2k} & \text{if } n = 2k - 1\\ \frac{1}{2k - 1} & \text{if } n = 2k \end{cases} \text{ where } k \ge 1 \text{ and therefore } n \ge 1. \text{ Set} \end{cases}$$
$$\mathcal{E}_{n} = \left(\frac{1}{2}\right)^{n} \text{ and define } f : R \to R \text{ by} \\ f(x) = \sum_{\substack{n : x_{n} < x}} \mathcal{E}_{n}$$

(a) Compute f(0), f(-1), f(1), $f(\sqrt{2})$, and f(1/2). [4 pts]

(b) Determine the set of discontinuities, D(*f*) , for the function. Justify your claim. [6 pts]

- 2. Let f:[a, b] → R be increasing, and let {x_n} be an enumeration of the discontinuities of f. For each n, let a_n = f(x_n) f(x_n-) and b_n = f(x_n+) f(x_n) be the left and right "jumps" in the graph of f, where a_n = 0 if x_n = a and b_n = 0 if x_n = b. Show that ∑[∞]_{n=1} a_n ≤ f(b) f(a) and ∑[∞]_{n=1} b_n ≤ f(b) f(a). [10 pts]
- 3. If C is a collection of connected subsets of M, all having a point in common, prove that $\cup C$ is connected. [10 pts]
- 4. Can there be a continuous **onto** function $f : R \to R \setminus Q$? Explain. [10 pts]